Pixel level uncertainties

Overview + introduction

Thomas Popp (DLR)

AEROSAT, Fifth Meeting, Helsinki, 12 / 13 October 2017

The concept of pixel-level uncertainties

Sensitivity to AOD varies largely with pixel conditions

- → AOD
- Aerosol properties, surface brightness / bi-directionality
- → Geometry, cloud situation, …

Example nadir radiometer: Dominant uncertainty terms bias corrected as much as we can do – random STD uncertainty

$$\sigma_{AOD} = \sqrt{\left(\frac{\partial AOD}{\partial R_{TOA}} \sigma R_{TOA}\right)^{2} + \left(\frac{\partial AOD}{\partial Alb_{surf}} \sigma Alb_{surf}\right)^{2} + \left(\sigma_{AOD}^{ensemble}\right)^{2} + \sigma^{2}(0)}$$

Uncertainties and validation

Ex posteriori validation and pixel-level uncertainty prediction need to be consistent

Validation of predicted uncertainties to reference data

Document untreated / unvalidated uncertainties quality flags / quality statements (e. g. near clouds)

Who needs pixel-level uncertainties?

 \neg Data assimilation

Consistent data integration

0.50 ().60 ().70 (5.80

Components of Level 2 Error Model (requires lots of data to pull out)

→ Can be as simple as RMSE as a function of AOD

- → AOD can be from AERONET (diagnostic) or own AOD (prognostic).
- But, RMSE is symmetric nor does it address massive outliers which are often the problem

→ Terms include:

- Differential Signal to Noise: Lower boundary minus total, including view angle/optical path length.
- → Lower Boundary Condition:
 - → Ocean: Wind/glint/whitecap, class 2 waters, sea ice
 - Land: Surface reflectance model, snow, view angle/BRDF/hotspot
- → Cloud mask
- → Microphysical: Fine coarse/partition, P(θ)/g, ω_o , AOD
- Biases are often folded into "random" error models. If they are known, why not correct for them?
- Radiance Calibration: Individual wavelengths propagate non-linear through retrievals and are not easy to incorporate.

New MISR V23 dark water uncertainties see poster by M. Witek / JPL

- MISR's aerosol retrieval algorithm calculates cost functions (χ^2_{abs}) between observed and pre-simulated radiances for a range of AODs and a prescribed set of aerosol mixtures (74).
- The new approach in <u>dark water</u> retrievals considers the entire range of χ^2_{abs} for all mixtures and does not impose thresholds on χ^2_{abs} to determine the success or failure of a particular mixture.
- The uncertainty depends on the combination of:
 - a) absolute values of χ^2_{abs} for each aerosol mixture,
 - b) widths of χ^2_{abs} distributions,
 - c) spread of χ^2_{abs} distributions among the ensemble of mixtures.

MISR uncertainty evaluation

Uncertainty generally increases with the difference between MISR and Aeronet AOD (based on ~1300 collocations)

Legend explanation:

•"Nearest retrieval" - MISR retrieval closest to the Aeronet location

•"Average retrievals (r<17.6 km)" - all MISR retrievals that are within 17.6 radius from the Aeronet location

Retrieved uncertainty has characteristics similar to the standard deviation of the normal distribution: the 3-sigma rule (68-95-99.7) is followed closely.

MODIS Dark Target Retrievals in Cloud Vicinity see poster by F. Patadia / GSFC

Enhanced AOD near clouds

Schematic of One MODIS Granule

- MODIS has : (1) Observations at 500 m (2) Distance of every 500m pixel from a cloud
- To estimate cloud effect, retrievals were done as a function of distance to cloud
- **1)** $\tau 0$: All pixels used in C6
- 2) $\tau 20$: pixels with cloud pixel distance > 20 (1 km away from clouds)

Hypothesis :

If C6 AOD is elevated due to clouds then $\tau 20 - \tau 0 = \underline{Negative}$

Investigating Reflectance Histograms @500 m

Histograms of 865 nm reflectance pixels with good and bad AOD retrievals, shows that

- Reflectance histogram of Clear-sky pixels is Gaussian
- Reflectance histogram of Cloudy region pixels are skewed
- Filter cut-off will govern high / low bias in AOD

Per-pixel reflectance histograms suggests retrieval possibility using median reflectance values (work in progress)

Aerosol_cci progress

Long-term consistency of uncertainties (Aerosol_cci: ATSR 1995 – 2017)

Questions

- Can we achieve consistency validation <-> error propagation?
- → How can we treat non-Gaussian distributions?
- → How best validate pixel-level uncertainties?
- \neg How to treat propagation from lv2 to lv3 (correlations)?
- → How can we provide uncertainties for derived properties?
- Goals / deliverables until AEROSAT 2018
 Overview / recommendation paper (-> talk A. Sayer)

AEROSAT 2016 / Beijing

- ✓ Use of uncertainties in models
 - Matching satellite model on daily / hourly + colocation step needed (Schuttgens)
 - → Large uncertainties in monthly means due to sampling
 - → Satellite sampling in 1 degree box can provide histograms
 - More validation data as reference needed
 - → How separate systematic and random uncertainties
- → Good discussion of basic principles
- Use of linear regression and alternatives
 - \neg Uncertainties of metrics need to be considered
 - → Independent (trend) analysis need to be consistent
 - → Obvious analysis create higher confidence than those highly tuned
- \neg Uncertainties on different scales
 - > Be aware of limitations in error propagation and in validating propagated uncertainties
- -> conclusion: review / synthesis paper on characterizing uncertainties