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The concept of pixel-level uncertainties

7 Sensitivity to AOD varies largely with pixel conditions
—- AOD
=7 Aerosol properties, surface brightness / bi-directionality
—~ Geometry, cloud situation, ...

Example nadir radiometer: Dominant uncertainty terms
bias corrected as much as we can do — random STD uncertainty
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Uncertainties and validation

Ex posteriori validation and pixel-level uncertainty prediction need to be consistent

Validation to reference data Prediction of pixel-level
stratified for different conditions uncertainties by error propagation
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Validation of predicted uncertainties to reference data

Document untreated / unvalidated uncertainties quality flags / quality statements (e. g. near clouds)



— Data assimilation

Frequency

no assimilation

Who needs
pixel-level uncertainties?

MODIS assimilation with fixed uncertainties AATSR assimilation with pixel level uncertainties
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Components of Level 2 Error Model
(requires lots of data to pull out)

— Can be as simple as RMSE as a function of AOD
— AOD can be from AERONET (diagnostic) or own AOD (prognostic).

— But, RMSE is symmetric nor does it address massive outliers which
are often the problem

— Terms include;

—~ Differential Signal to Noise: Lower boundary minus total, including
view angle/optical path length.

—~ Lower Boundary Condition:
— Ocean: Wind/glint/whitecap, class 2 waters, sea ice

7 Land: Surface reflectance model, snow, view
angle/BRDF/hotspot

—~ Cloud mask
7 Microphysical: Fine coarse/partition, P(6)/g, ®,, AOD

7 Biases are often folded into “random” error models. If they are known,
why not correct for them?

7 Radiance Calibration: Individual wavelengths propagate non-linear
through retrievals and are not easy to incorporate.

— Verification of errors is also needed




New MISR V23 dark water uncertainties
see poster by M. Witek / JPL

» MISR’s aerosol retrieval algorithm calculates cost functions (y%,,)
between observed and pre-simulated radiances for a range of
AODs and a prescribed set of aerosol mixtures (74).

« The new approach in dark water retrievals considers the entire
range of 2, for all mixtures and does not impose thresholds on
Xans 10 determine the success or failure of a particular mixture.

» The uncertainty depends on the combination of:
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a) absolute values of y2,,. for each aerosol mixture, Yw: _Ev(r.f)-["”’-‘”(j;;’](l";j(‘“")] J
- - - . Xiﬂ('];): =1 j=l . . : m‘}.:_' s
b) widths of y?,, distributions, EWJ'I[Z““-'”JI

c) spread of y2,, distributions among the ensemble of mixtures.
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MISR uncertainty evaluation

Uncertainty generally increases with the
difference between MISR and Aeronet AOD
(based on ~1300 collocations)
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Legend explanation:
*“Nearest retrieval” - MISR retrieval closest to the
Aeronet location

*“Average retrievals (r<17.6 km)” - all MISR retrievals
that are within 17.6 radius from the Aeronet location

Percent of retrievals within envelop [%]

99.7% of the data are within
« 3 standard deviations of the mean
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Retrieved uncertainty has characteristics
similar to the standard deviation of the
normal distribution: the 3-sigma rule (68-
95-99.7) is followed closely.
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MODIS Dark Target Retrievals in Cloud Vicinity

poster by F. Patadia / GSFC

Enhanced AOD near clouds
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Aerosol optical thickness at 869 nm

Schema}ic of One MODIS Granule

1) 70 : All pixels used in C6

2) 120 : pixels with cloud pixel distance >
20 (1 km away from clouds)

Hypothesis :

If C6 AOD is elevated due to clouds then
120 - T0 = Negative

Using Cloud Pixel Distance
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Investigating Reflectance Histograms @500 m

Histograms of 865 nm reflectance pixels with good
and bad AOD retrievals, shows that

e Reflectance histogram of Clear-sky pixels is
Gaussian

e Reflectance histogram of Cloudy region pixels are
skewed

* Filter cut-off will govern high / low bias in AOD

Per-pixel reflectance histograms suggests retrieval
possibility using median reflectance values (work
In progress)
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Aerosol cci progress

—~ Long-term consistency of uncertainties (Aerosol_cci: ATSR 1995 — 2017)
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-> talk K. Stebel



Questions

Can we achieve consistency validation <-> error propagation?
How can we treat non-Gaussian distributions?

How best validate pixel-level uncertainties?

How to treat propagation from lv2 to Iv3 (correlations)?

How can we provide uncertainties for derived properties?

Goals / deliverables until AEROSAT 2018
—~ QOverview / recommendation paper (-> talk A. Sayer)



AEROSAT 2016/ Beljing

— Use of uncertainties in models
—Z Matching satellite — model on daily / hourly + colocation step needed (Schuttgens)
=7 Large uncertainties in monthly means due to sampling
=7 Satellite sampling in 1 degree box can provide histograms
=7 More validation data as reference needed
—~ How separate systematic and random uncertainties

- Good discussion of basic principles

- Use of linear regression and alternatives
=7 Uncertainties of metrics need to be considered
=7 Independent (trend) analysis need to be consistent
=7 Obvious analysis create higher confidence than those highly tuned

7 Uncertainties on different scales
7 Be aware of limitations in error propagation and in validating propagated uncertainties

-> conclusion: review / synthesis paper on characterizing uncertainties
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