USER CASE STUDIES

of ESA's aerosol CCI program

Stefan Kinne, MPI-Meteorology

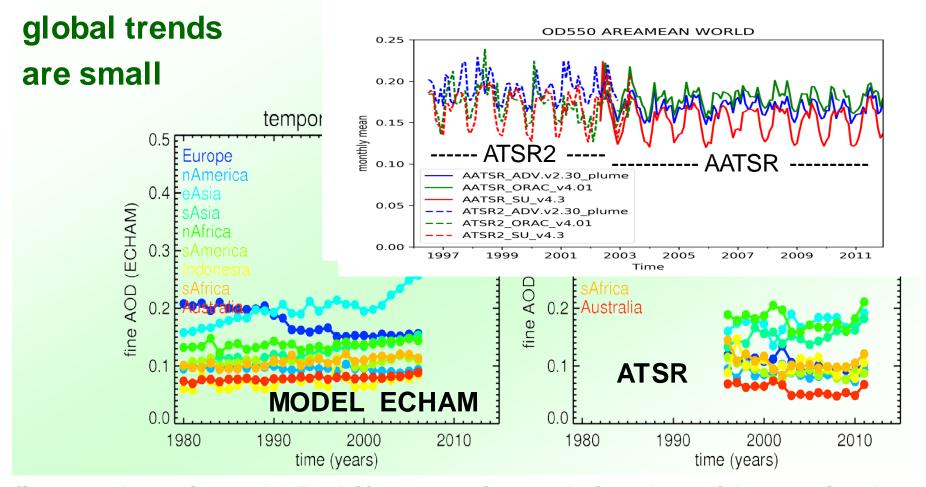
user case studies ?

- to promote the use of their aerosol products
 - use demonstration were supported by ESA

8 studies

user case study	institute	lead author
Temporal trends in AOD	Met-NO	Michael Schulz
Aerosol direct radiative forcing	MPI-Met	Stefan Kinne
Aerosol-cloud interactions	ETHZ	David Neubauer
Long-term data record on UV aerosol index	KNMI	Pepijn Veefkind
Assimilations of IASI dust AOD	BSC	Sarah Basart
CCM evaluation and improvement with CCI data	MPI-C	Christoph Brühl
Temporal trends in (natural) coarse-mode AOD	Met-NO	Jan Griesfeller
Aerosol-Cloud relations in satellite data	MPI-Met	Stefan Kinne

major topics

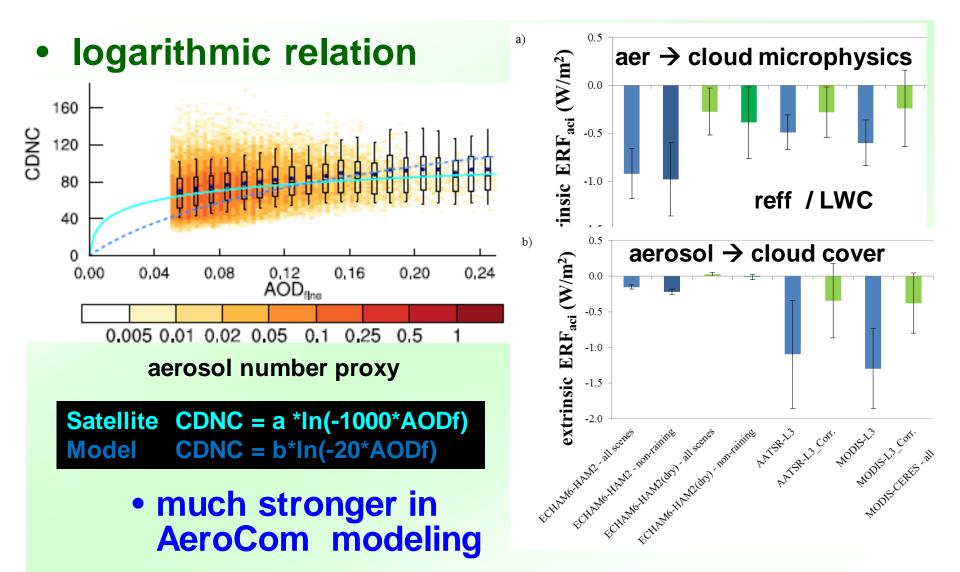

- trends in AOD
 - total AOD, fine-mode AOD, coarse-mode AOD
- aerosol cloud interactions
 - pure observations constraints
 - detailed stratifications with modeling
- modeling applications
 assimilation / evaluation
- long-term data record development

 UV Aerosol index ... more than 35 years
- radiative transfer application
 radiative effect and climate forcing

trends ? ... in AOD

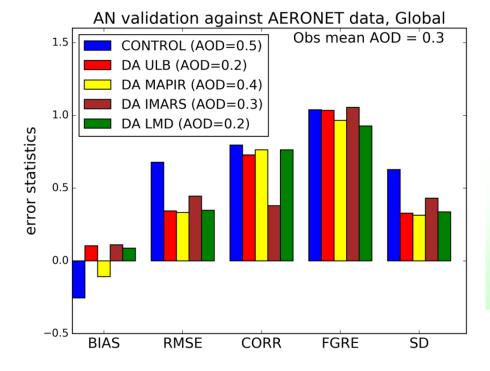
- ... based on the ATSR data record (1997-2012)
- global AOD did not change much
- considering ATSR2/AATSR overlap globally AODf weakly in- and AODc weakly decreased
- regional shifts in AOD (and AODf) as expected from emission data (US/EU → S/E Asia) are confirmed ... but smaller than in modeling
- regional AODc changes are uncertain as ATSR retrievals over bright surfaces are poor/missed

ATSR changes	SU		FI		OX		O4	
global averages	AOD	AODf	AOD	AODf	AOD	AODf	AOD	AODf
(2008-11) - (1996-99)	002	+.001	.000	+.002	+.006	+.006	+.006	+.006
(1996-99) variability	.009	.007	.016	.013	.010	.009	.019	.013
(2008-11) variability	.004	.002	.002	.003	.006	.007	.003	.004



fine mode regional AOD shifts larger in modeling that with satellite data

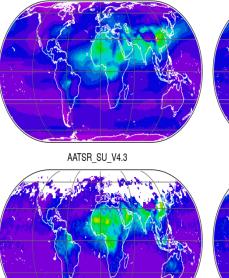
aerosol cloud interactions


- different satellite sensors (e.g. MODIS, ATSR) agree on a logarithmic relationship between aerosol and (water-cloud) droplet number
- similar aerosol-cloud relationships in modeling are much larger
- using a dry AI (rather then a wet AI removing the aerosol water) as aerosol number proxy brings cloud-aerosol relationships more in line with those by satellites

'twomey' dominates more aerosol -> smaller drops – higher albedo

applications in modeling

- Multi-annual AOD maps by different sensors (ATSR, IASI) are used to constrain component properties (e.g. dust size, dust amount)
- Validated model is used to simulated observed regional features as function of altitude (e.g. GOMOS, MIPAS)
- Data from different aerosol retrievals are applied in assimilation to rank through forecast quality their usefulness (e.g. IASI)



assimilation

 Iower RMSE with IASI dust AOD assim.
 4 diff. retrievals

evaluation

Model vs retrievals
MODIS
two diff ATSR.

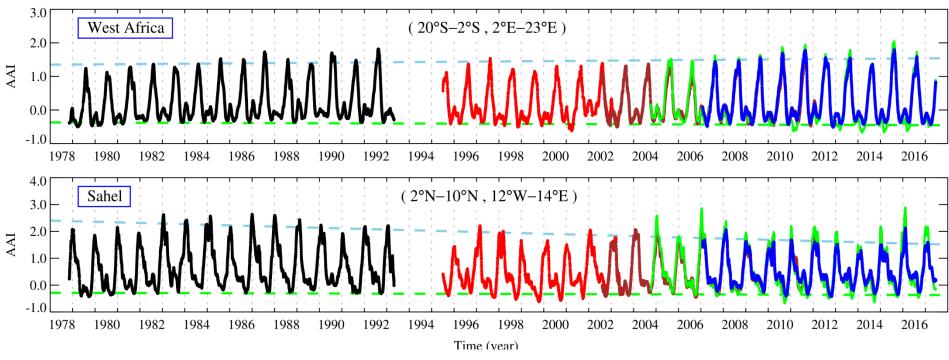
EMAC

L 0.0

0.8

0.6

0.4

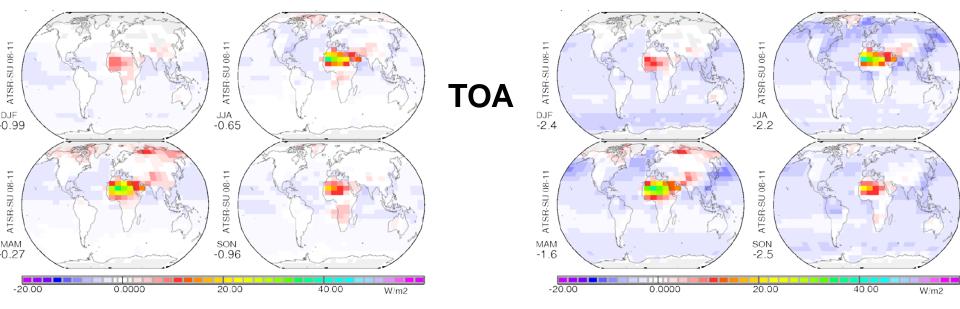

02

Long-term data records

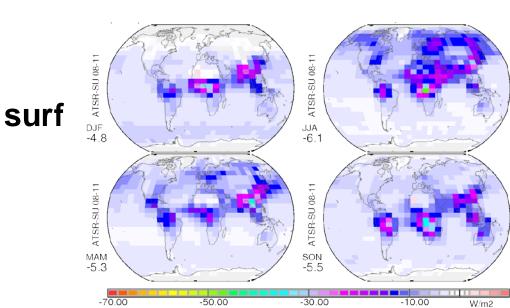
- ATSR (1995-2012) AOD, AODf (AODc)
 - 3 different versions by 3 retrieval groups
 - ATSR2 (vs AATSR): less cover, consistent?
 - AATSR time-series (2002-12) more stable
- IASI dust AODc (2002-2012)
 - 4 different versions by 4 retrieval groups
 - only sensitive to large dust sizes (>1um)
 - IR to vis conversion adds uncertainty
- TOMS/OMI/GOME UV AI (1979 ...)
 - qualitative info on aerosol absorption
 - limitation: dep on both altitude and absorption

UV-AI time-series

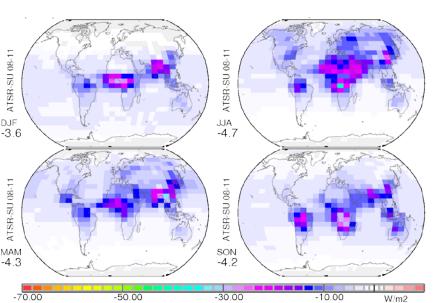
- very sensitive to biomass burning activity
 - seasonal varibility
 - interannual strength (assuming same altitude)



data record from different sensors: TOMS OMI GOME GOME-2


radiative transfer application

- ATSR (Swansea) data are applied in RT code
 - AOD values are substituted in MACv2
 - nice demo of radiative forcing anomalies
- general radiative forcing results
 - direct aerosol radiative effects / forcing have a strong regional and seasonal character
 - today's anthropogenic aerosol accounts only for 30% of AOD ... but > 50% in number
 - clouds modulate the clear-sky aerosol cooling forcing but likely strengthen the cooling
 - aerosol induced changes to clouds are more important for climate cooling than direct eff.s


seasonal rad. effects with 2008-11 ATSR AOD data

clear-sky (no clouds)

all-sky (with clouds)

summary

- major results of the 8 (aerosol CCI) supported user case studies are summarized in a CCIdocument (available at the end of the year)
- the seed money yielded interesting results especially in comparisons to modeling
- some studies also revealed data limitations (e.g. length of record, biases) when it came to deriving trends ... but strengths of continuous data are rather (seasonal) anomalies