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International Cooperative for Aerosol Prediction (ICAP)

International Cooperative for Aerosol Prediction
(ICAP/AEROCAST)

ICAP is an international forum for aerasol forecast centers, remote sensing data praoviders,
and lead systems developers to share best practices and discuss pressing Issues facing the
operational aerosol community. While the dynamical meteoralogy community has a well
developed protocols and near realk-time observing systems to support forecasting, the
aerosol community is only beginning ta organize. Infrastructure and data protocals need ta
be dewveloped between operational centers in arder to fully suppaort this emerging field

ICAP 9th Working Group Meeting: Radiative
Transfer and Impacts of Aerosol Radiative Forcing
on Numerical Weather Prediction: June 26 - 28,
2017, University of Lille, France

Inquiries: Oleg Dubovik, Jeff Reid, Peter Colarco

The purpase of the Sth working group meeting of the International Cooperative far Asrosal
Prediction (ICAP) is to assess the current state of the art and capabilities of radiative transfer
models and techniques as applicable to remate sensing of aerosals in the Earth system and

use in numerical weather prediction (NWP) models. Recent progress in aerosol remote
sensing has placed a considerable demand on radiative transfer forward modeling
capabilities in arder to close the observation problem, including the use of polarimetric and
multi-angle measurements and additional consideration of the surface BRDF. Data
assimilation approaches for aerosal prediction models are increasing dependent themselves
an farward modeling observed quantities (i.e , radiance) from the model fundamental
parameters of aerasol mass and compasition, including as well how the aerosol radiances
potentially impact the radiance simulation for traditional NWP meteorological data
assimilation (e.g., temperature). Further, the inclusion of aerosol radiative transfer inling in
MWP models permits radiative forcing of the aerosols to feed back on the NWP solution itself
We will review the current state of the art and current capabilities of the ICAP and ather
modeling centers, share recent progress, and plan far the future. Meeting PDFs

http://icap.atmos.und.edu/

« ICAP is an unfunded, international forum for
aerosol forecast centres, remote sensing data
providers, and lead systems developers to coordinate
efforts and share best practices.

» ICAP organizes yearly meetings to discuss pressing
issues facing the operational aerosol community.

It also coordinates the first global multi-model
Ensemble for aerosol forecasts (described in
Sessions et al 2015, ACP)

« |CAP centres depend on satellite and ground-based
data for assimilation and verification of the forecast
models.



ICAP meetings

Radiative Transfer and Impacts of Aerosol Radiative Forcing on Numerical Weather Prediction:
June 26 - 28, 2017, University of Lille, France

Lidar Data and its use in Model Verification and Data Assimilation: July 12-14, 2016, College Park, MD, USA
Assimilation: June 16-19, 2015, Barcelona, Spain

Validation: October 21-24, 2014 Boulder, CO

Recent Progress in Aerosol Observability for Global Modeling: November 5 — 8, 2013 Tsukuba, Japan
Aerosol Emission and Removal Processes: May 14 — 17, 2012, ESA/ESRIN, Frascati, Italy

Ensemble Forecasts and Data Assimilation: 11 - 13 May, 2011 Boulder, CO

Model Verification: 30 September-1 October, 2010 Oxford England (Joint with 9th AEROCOM Workshop)

Aerosol Observability: 27-29 April, 2010 Monterey CA
http://icap.atmos.und.edu/
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» Participating members are: BSC, Copernicus/ECMWEF, US Navy/FNMOC, NASA/GMAO, JMA, NCEP, UKMO,
and MeteoFrance (FMI to join soon)

» Aerosol Optical Thickness consensus of deterministic models from 8 centers out to 5 days

* New parameters in future, including surface concentrations

» It helps to identify problem areas for aerosol modeling.

 Ensemble is the top performer (Sessions et al 2015)

» Provides reliable forecast guidance and serves as a research/reference dataset (e.g. TIGGE NWP)
* Public website with ensemble aerosol charts: https://www.nrimry.navy.mil/aerosol/

» Maintained by NRL, Monterey (credits: Peng Xian)




ICAP Multi-Model Ensemble products

Plots are publicly available at:
https://www.nrimry.navy.mil/aerosol/

First MME for global aerosol prediction
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Challenges with multi-sensor satellite AOL
data: an example from the assimilation of
PMAP in the CAMS model

PMAp = Polar Multi-sensor Aerosol product (provided by EUMETSAT)
CAMS = Copernicus Atmosphere Monitoring Service

-



Mean AOD (1/02/2015-31/05/2015)
PMAp-A PMAp-B
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Results shown for PMAp V2.1 test data (1/2/2015-31/5/2015)
Credits: Melanie Ades
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Assimilation test of global PMAp AOD

MODIS only
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The MODIS bias
correction is now actually

reduced when using the
PMAp data

A much larger and negative

_ bias correction is applied to

the MODIS data to account
for this mismatch
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Bias correction fields from CAMS run

PMAp-A PMAp-B
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What happens if we only use PMAp?

MODIS only
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* Very similar mean model state for MODIS only and MODIS + PMAp
Effect of higher PMAp-B observations apparent for PMAp only

PMAp only better than no AOD observations



Verification — PMAp only

RMS error

RMS error. Model against L2.0 Aeronet AOT at 500nm.
228 Voronoi-weighted sites globally (r__,=1276km).
1 Feb - 30 May 2015. FC start hrs=00Z. T+3 to 24.

FC-OBS bias

FC-OBS bias. Model against L2.0 Aeronet AOT at 500nm.
228 Voronoi-weighted sites globally (r__ . =1276km).
1 Feb - 30 May 2015. FC start hrs=00Z. T+3 to 24.
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What ICAP models need

For data assimilation we need a de-biased products with a residual point wise error estimate.
That is, we need an error model for bias and root mean square deviation. Large errors are
ok, as long as we know they are big.

Feel free to pack in as much metadata as is reasonable (cloud fraction, snow, aggregated
radiance or reflectances). It helps us develop our own error models and select the right data
to use.

Categorical aerosol models such as "dust, polluted dust, etc." can be difficult to implement in
data assimilation. Index of refraction of a complex mixture is not easily relatable. More
generally, unless we can clearly define an observation operator, an observable cannot be
effectively assimilated. Great uncertainties in observation operators --> specification of large
observation errors --> less impact.

Data needs to be easy to get and parse. Be consistent with a few major upgrades being
preferable to lots of incremental changes.

Consider the niche market and keep the global constellation in mind. Every product does
not need to do everything.



Components of Level 2 Error Model
(requires lots of data to pull out)

Can be as simple as RMSE as a function of AOD
AOD can be from AERONET (diagnostic) or own AOD (prognostic).
But, RMSE is symmetric nor does it address massive outliers which are often the problem
Terms include:
Differential Signal to Noise: Lower boundary minus total, including view angle/optical path length.
Lower Boundary Condition:
Ocean: Wind/glint/whitecap, class 2 waters, sea ice
Land: Surface reflectance model, snow, view angle/BRDF/hotspot
Cloud mask
Microphysical: Fine coarse/partition, P(0)/g, ®,, AOD

tBhiase’?s are often folded into “random” error models. If they are known, why not correct for
em?

Radiance Calibration: Individual wavelengths propagate non-linear through retrievals and are
not easy to incorporate.

Verification of errors is also needed




Considerations
Simple AERONET comparisons are a good start. But...

We can’t use bulk regressions, or compliance stats. We want point wise
RMSE

One way or another, it is best if we can de-bias the data
Everything we do to the data has a consequence.

Sole AERONET verification games errors in favor of the satellite product
through sampling in many forms (cloud screening, support availability).

Tuning to AERONET does not get at error covariance.

And AERONET has its own errors, particularly in association with
perceived coarse mode.

AQOT is simple, tractable and generally has an obs error much less than
the model. Spectral Deconvolution Algorithms give us a good fine/coarse
partition too. AAOT or o, not so, and the error bars are large on all
fronts. So how do we want error information delivered?



Summary

- ICAP is a good forum to make progress on common goals related to aerosol observations.
All centres involved in aerosol forecasting care about satellite data for assimilation, model
development and evaluation.

- Assimilation so far has heavily relied on satellite-retrieved AOD with MODIS being the
number one product.

- Incorporation of other products is happening but there are challenges related to relative
biases between the various products (including lidar backscatter — a talk on its own)

- AOD is still needed — bias corrected and error characterized

- Other observations are needed: lidar backscatter, absorption AOD, mass concentrations
(difficult from satellite)

- Multi-sensors aerosol climatologies are needed (also by the NWP community)

THANK YOU!




