AeroSAT posters

•

- AROLA
- BAI
- CHE
- FARLIE
- FAN
- GARAY
- GINOUX
- GUANG
- HSU
- **HU**

• JIE

•

• LIU

• LU

• KAZUMA

• KOLLACHI

• LIPPONEN

• LACAGNINA

MAHMOOD

• MATTOO

• MEI

- SHAHZAD
- SHUKLA
- THOMAS
- TSAY
- VANDEN-**BUSSCHE**
- VANDEN-**BUSSCHE**
- XIE

AROLA

 Huttunen, J., Kokkola, H., Mielonen, T., Mononen, M. E. J., Lipponen, A., Reunanen, J., Lindfors, A. V., Mikkonen, S., Lehtinen, K. E. J., Kouremeti, N., Bais, A., Niska, H., and <u>Arola, A.:</u>
 Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table, Atmos. Chem. Phys., 16, 8181-8191, doi:10.5194/acp-16-8181-2016, 2016.

SSR = Function of **SZA**, **AOD**, **SSA**, **WVC**

SSR = Surface Solar Radiation SZA = Solar Zenith Angle AOD = Aerosol Optical Depth

SSA = Single Scattering Albedo WVC = Water Vapor Content Measured or known / input, Retrieved / output

Following methods:

- 1) a look-up table method based on radiative transfer modelling
- 2) a non-linear regression method
- 3) Gaussian Process (GP)
- 4) Neural Network (NN)
- 5) Random Forest (RF)
- 6) Support Vector Machine (SVM)

Compared with AOD from AERONET site in Thessaloniki, Greece.

Figure 4. The same as Fig. 3, but the ratio of predicted to measured AOD is given as a function of the water vapour content (WVC).

Neural Network

Support Vector Machine

Figure 5. Solar surface radiation (SSR), aerosol optical depth (AOD) and water vapour content (WVC) for a fixed solar zenith angle ($48.50-51.50^{\circ}$) for (a) look-up table (LUT) and (b) measurements (Meas). The predicted AODs for (c) LUT and (d) neural network (NN) are the same for SSR, WVC and SZA.

BAI

Ground-level PM_{2.5} concentrations derived from 3km resolution MODIS AOD over the Yangtze River Delta in China

- A mixed effects model (*Lee et al.* 2011)was employed to predict PM_{2.5} concentrations without using meteorological data.
- An obvious increase in R² for the model was found compared to the linear regression(Fig.1.).

Fig.2. Mean PM_{2.5} concentrations over the

Yangtze River Delta.

Susceptibility of R² to the number of monitor sites involved

Fig.3. Box plots of R² of different models for 3 sensitivity tests. (Left test involved 30% of sites, center and right employed 60% and 90%, respectively. Stations were chosen randomly for given number of sites and repeated 100 times)

- > The method has a good performance.
- R² of this model reduced when the number of monitor sites increased, which was opposite to the previous study (*Xie et al.* 2015).
- This was partly because the method insufficiently represented the spatial and temporal relationship between AOD and PM_{2.5} over the given region, especially in heterogeneous area.

CHE

VALIDATION AND COMPARISON OF **AATSR AOD** L2 PRODUCTS **OVER CHINA**

Yahui CHE

Yong XUE, Jie GUANG, Jianping GUO, Ying LI, Cheng FAN, Yanqing XIE RADI/CAS, Beijing Web: www.tgp.ac.cn Email: <u>yx9@hotmail.com</u>

Summary:

The main purpose of this word is to **validate different** performances of **AATSR AOD retrieval algorithms** over China from Aerosol_cci project, including the Swansea algorithm (SU), the ATSR-2ATSR dual view aerosol retrieval algorithm (ADV), and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC), using ground-based data from AERONET and CARSNET (China Aerosol Remote Sensing Network) in 2007, 2008 and 2010.

Five parts will be represented by this poster:

- Part 1 is about introduction of AERONET and CARSNET
- Part 2 is introduction of ADV, ORAC and SU algorithms.
- Part 3 validation results, including seasonal validations
- Part 4 is an analysis of results
- Part 5 is a summary.

FARLIE

FAN

15th CAS-TWAS-WMO Forum 15th AeroCom and 4th AeroSAT Workshops

19-24 September, 2016 | Beijing, China

Retrieval of Aerosol Optical Depth and Land Surface Reflectance from FY3/MERSI

Cheng FAN Jie GUANG, Yong XUE, Aojie DI, Lu SHE, Yahui CHE RADI/CAS, Beijing

www.tgp.ac.cn

Email: <u>chengfjane@163.com</u> yx9@hotmail.com

Results

Validations

GARAY

GINOUX

GUANG

Aerosol Optical Depth Retrieval in Xinjiang Region Using Indian National Satellite (INSAT 3D) Data

 This paper proposed an improved algorithm to retrieve AOD over bright surface (desert area) using a Geostationary satellite-Indian National Satellite (INSAT 3D) data.

More than 80 percent of valid pixels get the same types!

Figure 1. comparison between INSAT-3D retrieved aerosol type and MISR Aerosol type (SNA: Spherical Non-absorbing, SAB: Spherical Absorbing, NS: Non-Spherical)

Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences

Aerosol Optical Depth Retrieval in Xinjiang Region Using Indian National Satellite (INSAT 3D) Data

- Figure 2. Comparison among the retrieved AOD
 (a), aerosol types (b), and MODIS RGB image (c)
 at the corresponding time.
- Figure 3. Validation of retrieved AOD from INSAT3D with MODIS AOD product and AERONET in-situ AOD.

Correspondence: <u>xueyong@radi.ac.cn</u>, <u>guangjie@radi.ac.cn</u> www.tgp.ac.cn

HSU

Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of VIIRS, OMPS, and CALIOP Observations

> Photo taken from Space Shuttle: Fierce dust front over Libya

N. Christina Hsu (PI), Jaehwa Lee, Corey Bettenhausen, Andrew Sayer, and Colin Seftor

Laboratory for Atmospheres NASA Goddard Space Flight Center, Greenbelt, Maryland USA

Product Validation Using 7SEAS field campaign Data

Retrieval Performance Evaluation Using Multi-year CALIOP and AERONET Data

HU

Climatology (2002-2014) of aerosol products derived from MODIS, MISR and OMI sensors over the Yangtze River Delta region

Key Laboratory for Aerosol-Cloud-Precipitation of CMA Nanjing University of Information Science & Tech. Nanjing, CHINA

Email: 18252085328@126..com

Spatial and temporal distribution of AOD, AE over East China

Aerosol type classification : MODIS – OMI algorithm

JIE

KAZUMA

- 堂やちゃ~

3. Example of Ground-based observation at several Japan sites.

5. Summarv

15th AeroCom & 4th AeroSAT Workshop in Beijing, China: 2016.9.22, Kazuma Aoki

KOLLACHI

The relationship between characteristics of physiographic and dust storm phenomena in Khuzestan, Iran Abdolnabi Abdeh Kolahchi and Ali Akbar Noroozi <u>kolahchi@scwmri.ac.ir</u>, <u>noroozi aa@scwmri.ac.ir</u>

The aims of this study: To investigate Role of land cover changes in Internal dust storm generation in the Khuzestan province, Iran.

- Data
 - Remote Sensing (Landsat 7 and 8)
 - Various Supervised Classification method (MLC, SAM and SID)
 - ASTER (DEM)
 - Elevation, Slope, Aspect
 - The MODIS (level 2) images and the Brightness Temperature Difference (BTD) Index
 - For Detection of Dust Phenomenon
 - Climate Data
 - (Wind Speed, Wind Direction)
 - Physiographic
 - (Slope, Aspect, Soil erosion and Geological sensitive formations)
 - Modeling Techniques
 - Tracking the movement of dust particles using wind speed and wind direction

Conclusions:

The tracking dust storm of the regions shows that most of dust comes from North West direction toward South East as well as West direction toward East during warm seasons and from South direction to North in cold seasons. The farmland and irrigated farm decrease and bare land increase during 2000-2015. These features, along with physiographic features such as erosion on formations, salty and swampy soil, low soil moisture, land use changes caused potential for dust to be targeted west and south west province such as Khuzestan province.

LACAGNINA

LIPPONEN

Pixel level uncertainty estimates for AOD using Bayesian Dark Target algorithm Antti Lipponen

Probability distributions:

Prior distribution

- Spatial correlations
- Seasonality
- Non-negativity of AOD

Likelihood distribution

- Connects observations to unknowns
- Observation model
- Uncertainty models

Posterior distribution

- Solution to our retrieval
- Pixel level uncertainty estimates

LI

LIU

NOAA VIIRS Dark Target-Bright Surface Aerosol Optical Depth Algorithm

Hongqing LIU^{1,2} (<u>Hongqing.Liu@noaa.gov</u>), Hai ZHANG^{1,2}, Istvan LASZLO^{2,3}, Shobha KONDRAGUNTA², Lorraine REMER⁴, Pubu CIREN^{1,2}, Jingfeng HUANG^{2,5}, and Stephen SUPERCZYNSKI^{2,6}

1. I.M. Systems Group, Inc., Rockville, USA
 2. National Oceanic and Atmospheric Administration, College Park, USA
 3. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, USA
 4. Joint Center for Earth systems Technology, University of Maryland Baltimore County, Baltimore, USA
 5. Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
 6. Systems Research Group, College Park, USA

A new algorithm (EPS) was developed at NOAA/NESDIS to retrieve aerosol from multispectral, single-look, unpolarized Visible Infrared Radiometer Suite (VIIRS) reflectances.

- Retrieves over both dark and bright snow-free surface
- High spatial resolution (0.75km)
- Improves over current operational VIIRS aerosol product (IDPS)
- Validation shows performance is comparable to MODIS

Focus on Asia

High Quality Aerosol Optical Depth at 550nm (2015001)

LU

MAHMOOD

Seasonality of global and Arctic black carbon processes in AMAP models

R. Mahmood, K. von Salzen, M.G. Flanner, M. Sand, J. Langner, H. Wang, L. Huang Postdoc (SEOS, University of Victoria, Victoria BC, Canada), Funding: NETCARE project

BC budgets in Arctic

MATTOO

MEI

NOROOZI

Identify areas with dust storm potential of physiographic and climatic characteristics

Ali Akbar Noroozi & Elham Haghnejad <u>noroozi.aa@gmail.com</u>; <u>noroozi_aa@scwmri.ac.ir</u>

A combination of statistical methods, remote sensing and modeling were used.

The data used included: daily synoptic stations, Landsat and MODIS daily satellite images, U and V data from the NOAA Web site and Landuse changes over the period 2000-2015.

Detection of dust storm on satellite imagery and their concentration using images obtained from AOD and BTD indices, represent the largest concentration of dust in the West and South West regions of Khuzestan province, where more than 80 percent of the dust in these areas were consistent with the results of statistical data.

SHAHZAD

SHUKLA

THOMAS

ORAC

Optimal Retrieval of Aerosol and Cloud

Gareth Thomas

RAL Space, Rutherford Appleton Lab, UK

- Introduction to, and update on the ORAC algorithm
- A one-stop-shop for the retrieval of aerosol and cloud from visble-IR satellite imagers

gareth.thomas@stfc.ac.uk P-2-22

TSAY

• given in AeroCom

VANDENBUSSCHE

Poster P2-24: IASI dust Comparison of 4 algorithms

VANDENBUSSCHE

XIE

Image fusion of MODIS AOD products based on maximum likelihood estimate method

Method

In this study, we use the maximum likelihood method to determine the weights of various images involved in fusion to produce an Brazil's AOD data set from 2007 to 2010 based on two AOD products: MOD DB and MOD DT according to the pixel error

- First we compare the various products to AERONET to determine the error size of the pixels of the various products.
- Then, we study and determine the relationship among the observation error, the value of the remote sensing observations and the value of surface reflectance, so as to determine the error size of the observation value in the absence of the ground sensing station.
- Finally, we determine the weight of the fusion according to the root mean square error of the different products (Xu et al., 2015)

Study results and conclusion

from 2007 to 2010. from 2007 to 2010. from 2007 to 2010. from 2007 to 2010. After comparing the original data, combined data and fused data with the AERONET observations, we find that the **RMSE of the fused image is smaller than all other data**, and **its correlation coefficient is better** than MOD DB AOD, so the data quality is improved. Meanwhile, the proportion of the fused AOD image with valid value is larger than any of the original products and MOD combined AOD. Thus, the fusion increases the spatial coverage.