Evaluations of seasonal and spatial variations of global aerosol optical depth in GEOS-Chem-APM based on multipleplatform observations

Xiaoyan Ma¹² and Fangqun Yu²

¹Key Laboratory for Aerosol Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, China, ²Atmospheric Sciences Research Center, State University of New York at Albany, Albany, New York, USA,

> 15th CAS-TWAS-WMO Forum 15th AeroCom / 4th AeroSAT workshops

Beijing, China, September 22, 2016

Advanced Particle Microphysics (APM) model

Turco et al., 1979; Jacobson et al., 1994; Yu and Turco, 1998; Yu, 1998; Yu and Luo, 2009; Yu, 2010; Luo and Yu, 2011; Ma et al., 2012; Yu et al., 2012, 2013

- Secondary particles (SP) : 40 bins (composed of SO4, NO3, NH4, SOA)
- Sea salt particles: 20 bins
- Dust: 15 bins

day

BC: two log-normal modes (one for fossil fuel, the other for biomass burning)

∼ 2 days

Modeled aerosol burden from GEOS-Chem-APM

Global AERONET Sites

Level 2.0 Quality Assured Data, over 600 sites around the world

Selection criteria:

- at least 36 months data available
- eliminated the sites with a low spatial domain and with a low data quality according to the site assessment provided by Kinne et al. (2013)

Selected AERONET Sites

North America

- Secondary Particle (SP: Sulfate, Nitrate, Ammonia, SOA) dominates
- Smaller inter-annual variabity in the model

Europe

- Secondary Particle and dust dominate. dust transported from North Africa too high?
- Reasonable inter-annual variation

North Africa

• Mineral dust dominate. dust transported from North Africa too high?

South Africa

- POA dominates, SP contributes secondly high.
- Consistent seasonal variation (highest in Fall due to BB). Ma and Yu (Tellus B, 2015)

South America

- POA dominates
- the burning season in South America is shorter compared to South Africa

East Asia

• Secondary Particle (SP: Sulfate, Nitrate, Ammonia, SOA) dominates, POA and BC contribute more than in North America and Europe.

Vertical profile of aerosol extinction

Anthropogenic RF is generally stronger over oceans even though anthropogenic aerosol sources are on land.

Because maritime clouds are more susceptible to changes in aerosol concentrations.

Ma et al. (JGR, 2014)

W m⁻²

10

0.5

0.1

0

-0.01

-0.05

-0.1

-0.5

-1

-2

-5

-10

180

Summary and conclusions

- Predict sulfate mass concentrations much better than BC.
- Capture the observed seasonal of AOD over all representative regions.
- Overall weak inter-annual variability compared to observations.
- Vertical profile of AOD at EUS and WEU agree well with CALIPSO.

Simulated and observed particle size distribution

Table 1. Comparisons of AOD in clear sky from the GEOS-Chem-APM with satellite data MODIS, MISR and SeaWiFS, and comparisons in 72 AERONET sites having at least 36 months data available between the model and the observations. The AERONET sites with low quality and low spatial domain are also excluded

	GEOS-Chem-APM	MODIS	MISR	SeaWiFS	AERONET
Global	0.102	0.154	0.168	0.130	
Land	0.135	0.188	0.198	0.188	
Ocean	0.088	0.139	0.157	0.110	
Low AOD (<0.1)	0.055	0.069	0.075	0.066	
Median AOD (0.1,0.3)	0.148	0.156	0.162	0.158	
Large AOD (>0.3)	0.506	0.471	0.460	0.458	
72 AERONET sites	0.168	0.192	0.206	0.193	0.223