"All models are wrong, but some are useful" -G. P. Box

Thoughts on the Use of Uncertainties in Models

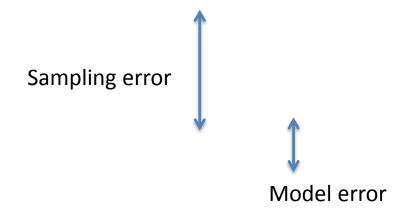
Andrew Gettelman

National Center for Atmospheric

Research

Ceci n'est pas une pipe.

How do we know models are right?


- All models are wrong, some are useful: models are fit for purpose
- How wrong are they? Or: what do we need to improve? Compare to observations
- Testable hypothesis: A model is valid (against an observation) if it is not statistically different from the observation
 - Easy: As long as we know the statistics of the models and observations

First: Sampling Issues

- Sampling issues need to be handled first
- E.g.: daytime or ocean only observations
 - Note daytime = seasonal cycle in polar regions
- Recall talks yesterday by Andrews and Schutgens

From N. Schutgens

Representativeness of observations

Sampling: other issues

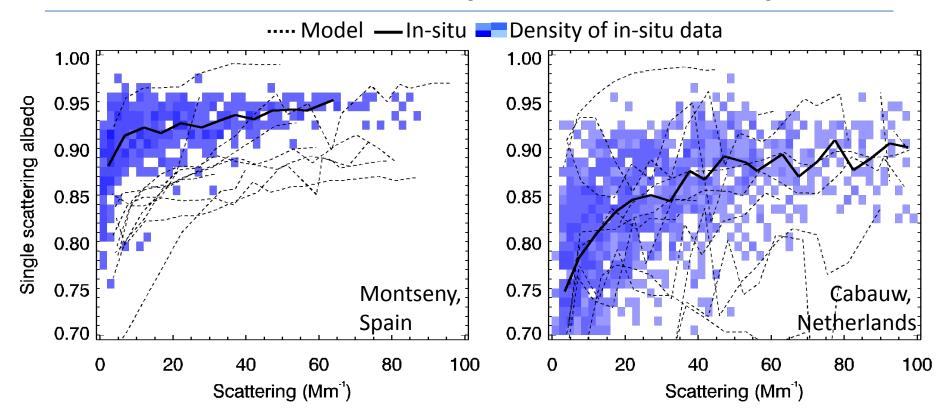
- Not just location and time
- Sampling is radiometric, can be masked and has a vertical component
- E.g.: averaging kernels (vertical structure)
- Masking (clouds)
- Spectral signature and thresholds
 - Different satellites see different things, not just geometry

Statistics

 Assuming we solve sampling issues, then is a model different than observations?

$$\sigma_{M_1-M_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 Difference of two sample means

- Difference depends on the statistics (σ) of both model and observations
- Tell us the range in which truth lies. That tells us how certain we are (or not)
 - Don't sugar coat it
 - Qualitative reasoning is fine, maybe better than too much error propagation


What quantities do we need to know?

- Stefan showed AOD
- Do we really want AOD? Or is it what we get?
 - When it differs what do we do?
 - Lots of physical factors built into a result
 - Surface downward radiation is another example
- Need to figure out what are the important metrics
 - Compare to what we can observe
 - Try to get observations for what we need
 - Then: go to process based metrics. Constrain the underlying model physics

Simulating observations (and error)

- If uncertainties are large (e.g. AOD), then let's reduce them. Together.
- First eliminate the (spatial) sampling bias
- Then make sure the model can 'simulate' the observations (averaging kernel, masking etc)
 - This requires a forward model (e.g. Lidar equation)
- Then drill down to components (e.g. of AOD)
 - E.g.: aerosol optical properties

Aerosol Behavior: Systematic Variability

- Lower loading corresponds to darker (and smaller) particles
- → preferential scavenging of large, scattering aerosol by clouds/precipitation?

The co-variance observed between SSA and scattering for in-situ data is not necessarily reproduced by model output

From Betsy Andrews

Thoughts for Discussion

- Uncertainties can be reduced with sampling
 - Spatial and Temporal
 - Radiometric and Sensitivity
- Tell us a best estimate of uncertainty
 - Make it generous (no 3σ changes!)
- Let's simulate the data with a forward model
 - Think about a model in "data space"
- What metrics are the right place to start?
 - Are we even looking at the right thing?
 - Modelers say we want X, but if you are really producing Y, then just tell us Y really well. Don't make X = f(Y).
 - What metrics are grounded in physical process understanding? Optical properties?