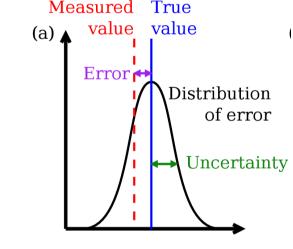
Uncertainty estimation in satellite remote sensing *Sources of error and ensemble techniques*

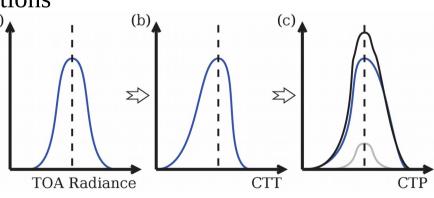
Adam Povey and Don Grainger

Thanks to Thomas Holzer-Popp and Greg McGarragh

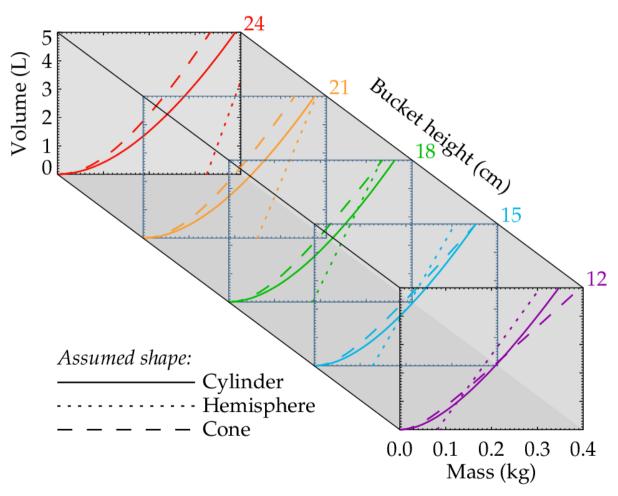


Summary

- Uncertainty must represent the non-linear and circumstantial nature of errors often dominant in satellite products.
- As the distribution of these errors is not always well understood, data producers must engage in a dialogue with data users to work towards useful estimates.
 - This can include ensemble techniques, quality assurance, qualitative descriptions.
 - This is complimented, not replaced, by validation activities.

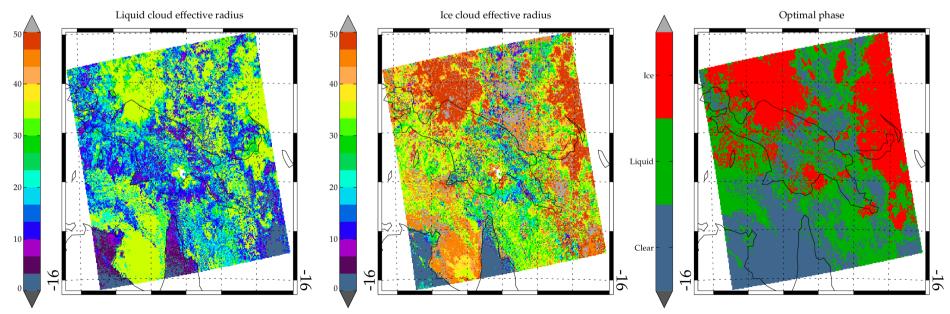

Classifying sources of error

- Intrinsic sources of error
 - Measurement
 - Statistical variation in measurand or detector
 - e.g. dark current, radiometric calibration
 - Parameter
 - Uncertainty in auxiliary information used
 - e.g. spectroscopic data, meteorological profiles
 - Both also known as "parametric errors"
- Generally well-represented by traditional techniques for calculating uncertainty.


Classifying sources of error

- Structural errors, resulting from choices made in the measurement and analysis systems
 - Resolution
 - Finite sampling of a constantly varying system
 - e.g. fair-weather bias, MODIS "bow-tie effect"
 - Approximation
 - Simplifications and approximations in calculations
 - e.g. using a LUT or plane-parallel atmosphere
 - System
 - Physically meaningful assumptions
 - e.g. choice of aerosol optical model
- Potentially non-linear and circumstantial. Thus, the source of error affects how it needs to be reported to users.

Ensemble Techniques


- Consider estimating the volume of a bucket, knowing only its mass.
- Shape is assumed but different assumptions produce different errors.
- The magnitude of error due to that assumption depends on the underlying state and other parameters of the retrieval.

AeroSAT Session 16, 9th October 2015

Ensemble techniques

- Ensemble techniques can better communicate uncertainties resulting from such errors.
 - A "multi-model" ensemble of analyses with differing assumptions and approximations.
 - A "multi-run" ensemble of analyses with different constraints.

AeroSAT Session 16, 9th October 2015

Uncertainty estimation in satellite remote sensing

Questions and comments?

Atmos. Meas. Tech. Discuss., 8, 8509–8562, 2015 www.atmos-meas-tech-discuss.net/8/8509/2015/ doi:10.5194/amtd-8-8509-2015 © Author(s) 2015. CC Attribution 3.0 License. Atmospheric Open Action Atmospheric Open Action Act

く

Discussion

Paper

iscussion Pape

Iscussion Pape

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

Known and unknown unknowns: the application of ensemble techniques to uncertainty estimation in satellite remote sensing data

A. C. Povey and R. G. Grainger

National Centre for Earth Observation, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

Received: 23 June 2015 - Accepted: 20 July 2015 - Published: 10 August 2015

Correspondence to: A. C. Povey (adam.povey@physics.ox.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

AeroSAT Session 16, 9th October 2015

Communicating with users

- Important to clarify the difference between what is measured and what the user wants to know.
 - For example, satellites only sample one time of day but users may need observations at other times.
 - For SST, in situ observations indicate the diurnal cycle is somewhat predictable so empirical corrections may be useful.
 - For cloud, data indicates the diurnal cycle is highly circumstantial so a single observation is not representative of an entire day.
- A quantity can be adjusted to meet a user's needs but
 - The transformation will introduce additional uncertainty and
 - The new quantity may not meet other user's needs.
- We prefer to report only the measured value and provide secondary support (i.e. communication) to produce transformations as needed.