Progress Toward a Global Aerosol Type Climatology Ralph Kahn NASA/Goddard Space Flight Center

Omar et al., JAOT 2009

CALIPSO 6-Grouping Aerosol Type Classification

Omar et al., JAOT 2009

AERONET Aerosol Type 7-Grouping Classification

Russell et al. JGR 2014

PARASOL data at Forth Crete projected onto the AERONET Aerosol Type Classification

Russell et al. JGR 2014

HSRL Aerosol Type 8-Grouping Classification

Burton et al. JGR 2012

Aerosol_cci Simple Concept

- 7 4 basic components
 - (Dust, Sea Salt, Fine-mode Weakly & Strongly Abs.
- Reflects theoretical information content
- External mixtures with 3 mixing fractions
- Evaluation ongoing of information content
- Output (easier to validate / compare)
 - → Fine mode AOD (fine mode / total mixing fraction)
 - Dust AOD (dust / total coarse mode mixing fraction)
 - → [AAOD (absorption fraction in fine mode)]

esa AOD mixing (fractions) from AEROCOM

Fine mode fraction

Fraction of the less absorbing component in the fine mode

Fraction of dust in the coarse mode

AOD550 (not used as a priori)

From: Thomas Popp

MISR Aerosol Type Discrimination

January 2007

July 2007

Kahn & Gaitley JGR 2015

MISR Climatology Dust AOD

See: Poster by Huikyo Lee, Olga Kalashnikova, Kentaro Suzuki, & Amy Braverman

SEAC⁴RS – MISR Overview 19 August 2013

Passive-remote-sensing *Aerosol Type* is a *Total-Column-Effective*, *Categorical* variable!!

GRASP: Generalized Retrieval of Aerosol and Surface Properties

Dubovik et al. 2011, 2014 Open Source

No Location-Specific Assumptions on aerosol and surface All calculation on the fly <u>Retrieved parameters:</u> Surface reflectance, aerosol: AOD, SSA, aerosol height, size information, refractive index, aerosol type, etc.

Expected practical advantages: accurate even over bright surfaces, even for high AOD, and for extended set of parameters

GRASP/PARASOL AOD443 29/09/2008

50

GRASP: towards aerosol classification

See: Poster by Oleg Dubovik, Anton Lopatin

Aerosol Type Validation Approach

- No "Ground Truth" except from Field Campaigns (Golden Days)
 - -- Unlike *Spectral AOD* (and *ANG*) from AERONET *Particle Properties* derived from AERONET entail *many more assumptions*
 - -- Far fewer Satellite-AERONET Sky-scan that Direct-sun Coincidences
- Self-consistency Tests
 - -- Qualitative, but useful
 - -- Regional and Temporal Behavior (stratified) vs. Expectation
- **Comparisons** with AERONET proxies
 - -- Compare *Seasonal*, *Inter-annual* patterns *Statistically*
 - -- Fine-mode Fraction (FMF)
 - -- *Effective radius* (r_e) and *variance* (σ) [two modes *issue with def. of "modes"*]
 - -- *Single-scattering albedo* (*SSA*) [for AOD_440 > 0.4; AERONET SZA > 50°]
 - -- *Sphericity* (*"%Sph."*) [for AERONET *ANG* < 1.0 only few coincidences w/AOD>0.2]

Kahn & Gaitley, JGR, 2015

MISR Aerosol Type Discrimination

Histograms of Lowest Residual & All Successful Aerosol Type Mixture Groups vs. AOD Kahn & Gaitley JGR 2015

Statistical *Comparisons* with AERONET – *Solar Village*

Kahn & Gaitley JGR 2015

Adapted from: Kahn, Survy. Geophys.

GoCART Model-Based Aerosol-Type Clustering

Taylor et al. Atm. Env. 2015

SAM-CAAM

[Systematic Aircraft Measurements to Characterize Aerosol Air

Masses]

[This is currently a concept-development effort, not yet a project]

Primary Objectives:

 Interpret and enhance 15+ years of satellite aerosol retrieval products

 Characterize statistically particle properties for major aerosol types globally,

to provide detail unobtainable from space, but needed to *improve*:

-- Satellite aerosol retrieval algorithms

-- The translation between satellite-retrieved aerosol optical properties

SAM-CAAM Concept

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

- **Dedicated Operational Aircraft** routine flights, 2-3 x/week, on a continuing basis
- Sample Aerosol Air Masses accessible from a given base-of-operations, then move; project science team to determine schedule, possible field campaign participation
- Focus on *in situ measurements required* to characterize particle *Optical Properties*, *Chemical Type*, and *Mass Extinction Efficiency* (MEE)
- **Process Data Routinely** at central site; instrument PIs develop & deliver algorithms, upgrade as needed; data distributed via central web site
- Peer-reviewed Paper identifying *4 Payload Options*, of varying ambition; subsequent selections based on agency buy-in and available resources

SAM-CAAM is feasible because: Unlike aerosol amount, *aerosol microphysical properties tend to be repeatable* from year to year, for a given source in a given season

Aerosol Type Summary

- Remote-sensing can provide optical constraints interpreted as particle *Size*, *Shape*, *and Indices of Refraction*
- A *further* interpretative step, entailing additional assumptions, reports particle *Chemical Composition*
- Remote-sensing *sensitivity to particle properties is much more dependent than AOD on retrieval conditions*
- Validation Data for aerosol type are very limited

-- Model simulations and In Situ measurements can help