
New Assessment of Aerosol-Cloud Interactions with ORAC-(A)ATSR

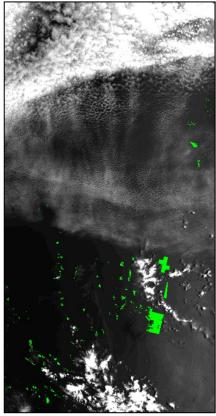
M. Christensen^{1,2}, D. Neubauer³, and C. Poulsen¹ ¹RAL Space, ²Oxford, ³ETH Zurich, AeroSAT workshop, 9 October 2015, Frascati, Italy

Aerosol Indirect Effect in Warm Cloud

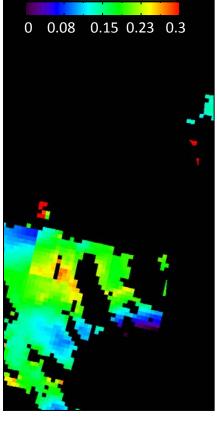
• Aerosol indirect effects pose one of the largest sources of uncertainty in climate projections.

- Highlighted Satellite: -0.85 [-0.93 to -0.45] W m⁻²
- Highlighted GCMs: -1.38 [-1.68 to -0.81] W m⁻²
- How do we close this gap between models and observations?
- What improvements can we make in satellite derived datasets or in models?
- The recipe for progress lies in improving satellite retrievals of aerosol and cloud and in understanding these physical processes that can improve model parameterizations.

Data (JJA-2008)


Satellite

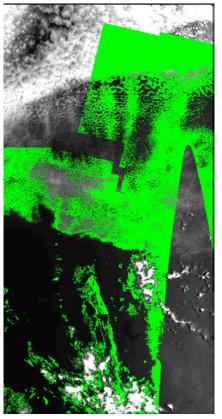
Product: OR v2.0 (September, 2		Spatial Resolution
AATSR - Clou	d R _e , τ _{CLD} , Cloud mask, cloud top pressure, cloud top temperature, phase, surface reflectanc	
AATSR - Aero v3.02	osol AOD, Å, aerosol index (AI=AOD × Å), quality flag	/ 10 km
Model		
Product	Parameter	Spatial Resolution
ECHAM6 HAM2	Prognostic variables for cloud and aerosol	1.875°x1.875° (T63)

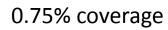

Aerosol-Cloud Collocation Method

Region: California Time: 2008/06/20 22:11

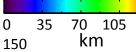
Joint Aerosol-Cloud Cloud-to-aerosol 10 km

Aerosol Optical Depth Retrieval

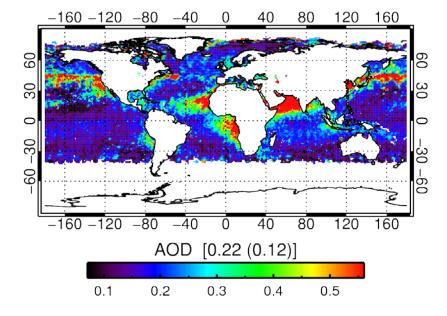

Distance to nearest aerosol pixel (km)

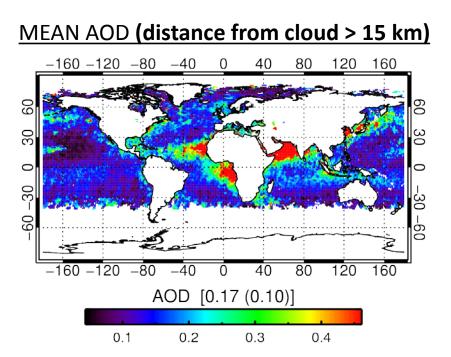


Nearest Neighbor

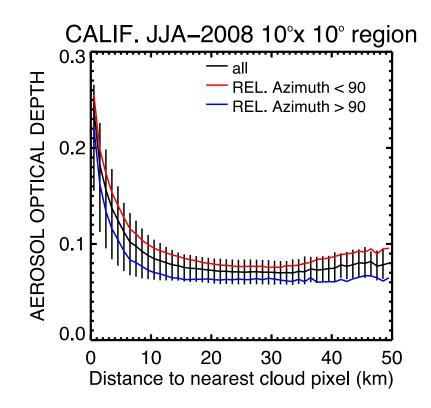

Aerosol-Cloud Mask (Cloud retrieved within 150 km of

nearest aerosol pixel)

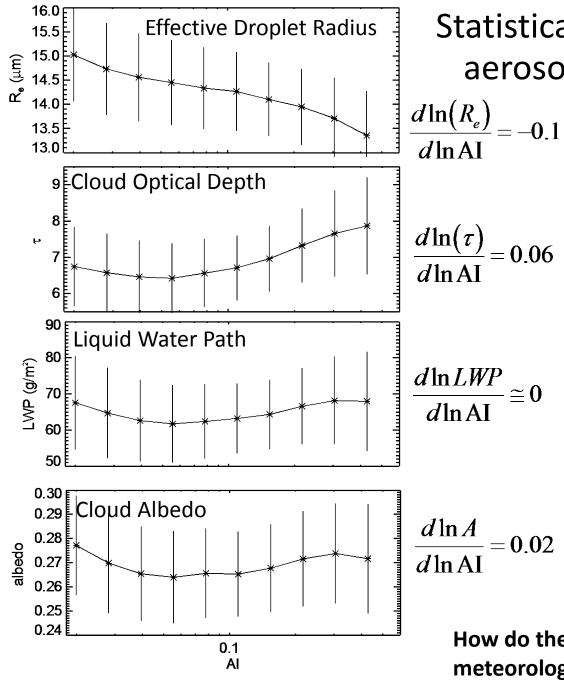

AOD > 0 QFLAG = 1



43.8% coverage

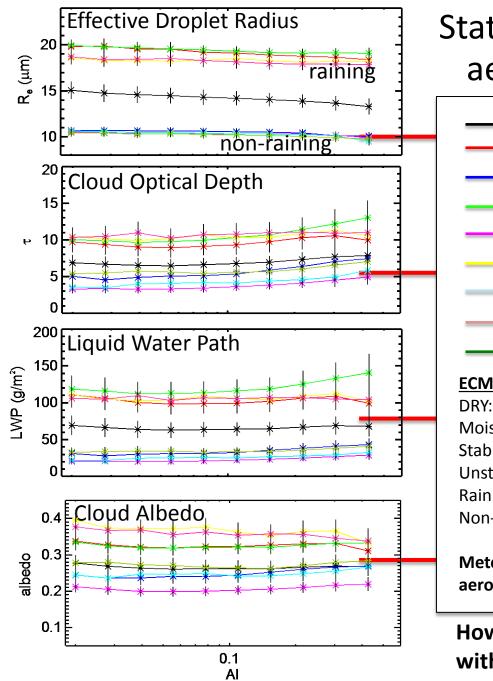

Criteria: low-level (CTP > 500 hPa), liquid cloud over dark surface ($A_{sfc} < 0.15$) within 150 km of aerosol retrieval

MEAN AOD (no cloud distance threshold)



Cloud Distance Impact on Aerosol Optical Depth Retrieval

- AOD is artificially large near cloud edges.
- Use aerosol-cloud pairs in which the aerosol is located at least 15 km from cloud edge and located at least 150 km from the nearest cloud pixel.



Statistical relationships between aerosol and cloud properties

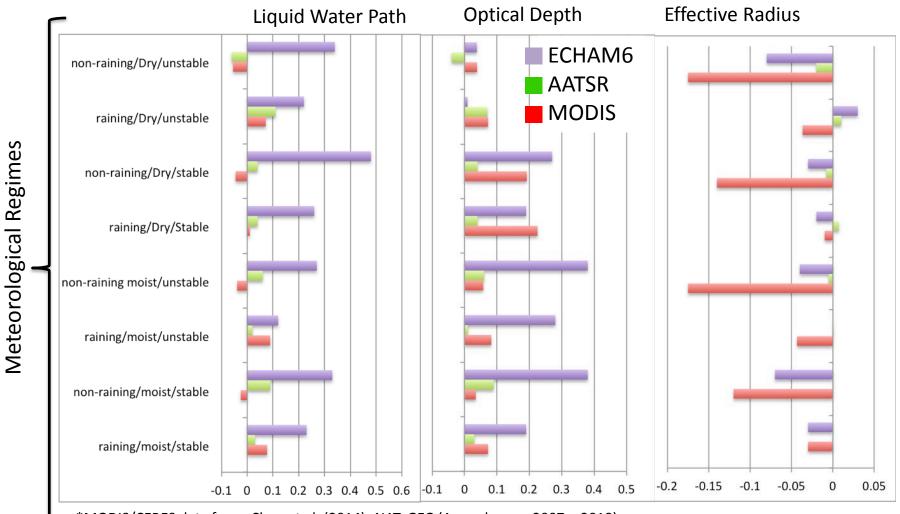
<u>Data</u>

- Aerosol index: product of aerosol optical depth and angstrom exponent is a proxy for cloud condensation nuclei.
- Aerosol-cloud pairs gridded into 1°×1° regions.
- Each region contains ~40,000 data L2 cloudaerosol data points.
- Aerosol (ATSR) properties are paired to 1-km cloud pixels through nearest neighbor method.

How do these observations vary with meteorology?

Statistical relationships between aerosol and cloud properties

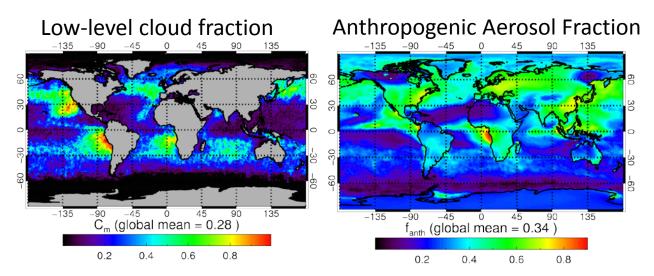
		-	
all Moist/Sta	ble Raining	ysical	
— Moist/Sta	ble Non-Raining		
—— Moist/Un	stable Raining		
— Moist/Unstable Non-raining			
Dry/Stable Raining			
Dry/Stabl	Dry/Stable Non-Raining		
– Dry/Unsta	Dry/Unstable Raining		
Dry/Unsta	able Non-Raining		
ECMWF ERA-INTERIM			
DRY: FTH < 40%	FTH: relative humidity at 700 hPa	hysic	
Moist: FTH > 40% Stable: LTS > 17 K	LTS: potential temperature difference between surface and	ne	
Unstable: LTS < 17 K	700 hPa		
Raining: Re > 14 um			
Non-raining: Re < 14 um			
Meteorology has only slight impact on			
aerosol-cloud susceptibilities.			
•			
I low do these ob			

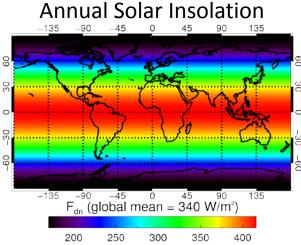

How do these observations compare with the ECHAM6 HAM model?

Satellite Model Comparisons

60S° – 60° N (Ocean only)

Global Oceanic Susceptibilities




*MODIS/CERES data from: Chen et al. (2014), NAT. GEO (Annual mean 2007 – 2010)

Main Points: 1. Model derived LWP & τ susceptibilities are significantly larger than satellite-derived values.2. Precipitation state and meteorology slightly influence the strength of the indirect effect.

What impact do these susceptibilities have on the aerosol indirect forcing?

Aerosol Indirect Radiative Forcing Estimation

Cloud albedo effect (intrinsic changes to cloud)

$$RF = -C_m \frac{dA}{d\ln AI} \Delta a \overline{F}_{dn}$$

RF: Radiative forcing

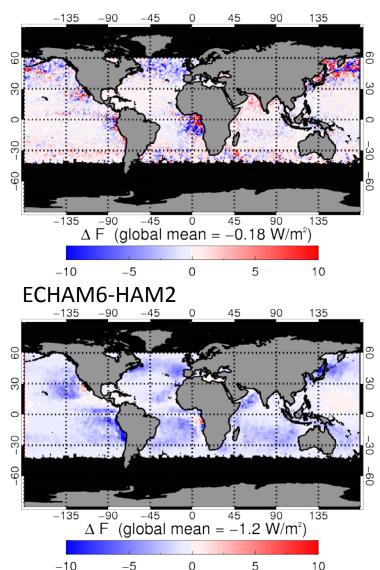
- C_m: warm low-level cloud fraction
- A: cloud albedo
- AI: aerosol index

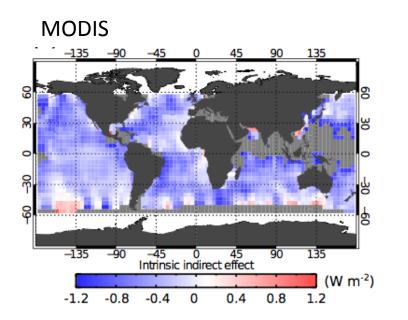
 $\Delta a:$ anthropogenic aerosol fraction

F_{dn}: mean incoming solar insolation Method: Chen et al. (2014)

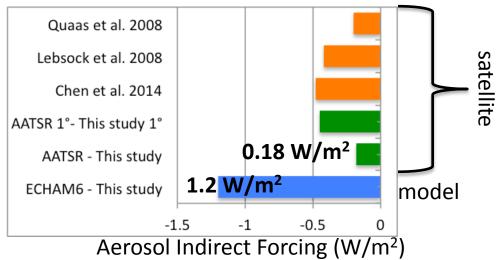
Low-level cloud fraction (AATSR)

• Water cloud below 500 hPa (~5.5 km)


Anthropogenic aerosol fraction (MACC-II)


- Grid: 1.25° x 1.25° 8 times daily
- AOD for: Black Carbon, Dust, Organic Carbon, Sea Salt, Sulphate
- MACC-II estimates the anthropogenic contribution to the aerosol optical depth (Bellouin et al., 2013).

Annual Solar Insolation (Coakley et al. 1979)


Aerosol Indirect Radiative Forcing Estimation

Summary

- Aerosol and cloud products retrieved using ORAC are combined together using a nearest-neighbor approach to limit cloud contamination and to study aerosol-cloud susceptibilities under various meteorological regimes.
- AATSR satellite retrieved susceptibilities are in general agreement (using only 3 months of data) with those derived using A-TRAIN (e.g., MODIS/CERES/CloudSat) data.
- Comparison with ECHAM6 HAM2 simulations reveal significantly larger susceptibilities in the model compared to the satellite derived values.
- Larger model susceptibilities lead to significantly larger aerosol indirect radiative forcing estimates.
- Further testing of the model parameterization schemes are needed in order to determine causes for the large susceptibilities and aerosol indirect radiative forcing estimates in the model.
- Use full extent of the (A)ATSR mission to examine the stability of aerosol-cloud susceptibilities over 17 years of observations.