

Welcome and Logistics

Storm Peak Laboratory

Ian B. McCubbin and A. Gannet Hallar
Storm Peak Laboratory, Desert Research Institute lan.mccubbin@dri.edu

Randy Borys, Joseph Michalsky, Fangqun Yu, Ross Petersen, Doug Lowenthal

High elevation, mountain-top atmospheric research facility readily accessible under all weather conditions

Storm Peak Laboratory
 Owned and Operated by Desert Research Institute Located in Northwest Colorado on the US National
 Forest

A Brief History of Storm Peak Laboratory

1979-1989: Research projects on winter orographic storms led by Prof. Lewis Grant from Colorado State University, with cloud and precipitation studies conducted by Randy Borys and other CSU scientists using space in ski lodge (1979-1980)

The researchers obtained small trailer on Storm Peak (1981-1983) and later on Mt. Werner (1984-1989)

1989-1994: Prof. Grant retires from CSU, USFS permit transferred to Dr. Borys at Desert Research Institute; continued research using instrumented trailers with the
 assistance of Dr. Wetzel.

1995: DRI builds a permanent facility at Mt. Werner site

2006: Dr. Borys retires, and Dr. Hallar and Ian McCubbin begin leading the facility.

Summer 2011 - Major upgrade funded by National Science Foundation ARRA funds

Aerosol, Cloud, and Trace Gases Research and Education Facility

Located on Steamboat Springs Ski Resort Elevation: $3220 \mathrm{~m}(10,530 \mathrm{ft})$

Pressure: ~ 690 mb
In cloud $\sim 25 \%$ of time in the winter
Mixed Phase Clouds
9 Person Bunkhouse
Full Kitchen, Running Water
Facility and Guest Instruments
National Science Foundation ARI-R² MAJOR RENOVATION:

New Aerosol Manifolds
New Wet Chemistry Lab
High Speed Internet Connection - 150

SPL Current Equipment

- Aerosol Concentration
- Aerosol Optical Properties
-TSI Nephelometer - 3
"PSAP - 3λ
- Aerosol size distributions
-TSI Nano-SMPS, SMPS \& APS
- DMT Cloud Condensation Nuclei (CCN)
- Multi-Filter Shadow-band Radiometer (UV \& Visible)
- DMT Cloud droplet size distributions probes

SPP-100 forward scattering spectrometer 2-47 $\mu \mathrm{m}$
Cloud Imaging Probe 25-1550 $\mu \mathrm{m}$
Precipitation Imaging Probe 100-6200 $\mu \mathrm{m}$
CO_{2} Measurement - Britt Stevens, NCAR
$\mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{CO}, \mathrm{NO}_{\mathrm{x}}$ Measurements
Water Vapor Isotope - Picarro
Cold Room- Cloud Sieves
Meteorological Station - 7 on Mountain

Inhibition of Snowfall by Pollution Aerosols

Summary of New Particle Formation

Measured Property	Spring (March, April, May)	Summer (June, July, Aug)	Winter (Jan, Feb)
Number of Total Days Studied	215	80	179
Percentage of Days with NPF event	56%	43%	52%
Average Initiation Time (MST)	$12: 12 \pm 104$ min	$11: 42 \pm 102$ min	$12: 41 \pm 91$ min

Particle size distribution measurements show significant difference in particle formation and properties during spring and summer at SPL.

Conclusion and Potential Cause

The likely source of frequent NPF in

$$
\begin{aligned}
& \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{OH}_{2} \\
& \mathrm{OH}+\mathrm{SO}_{2}+\mathrm{M} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~s})
\end{aligned}
$$ coal fired power plants located directly West of region.

he impact of coal burning in the Western US on aerosol loading and CCN?

Acknowledgements:

AGS-0931431 and EAR-0963558 supported this work

