

#### Aerosol typing (WG 5)

#### **Introduction / seed questions**

#### (with Lucia Mona / WG lead)



## Aerosol type

- $\neg$  ... is a categorial / qualitative variable
- → ... is input needed for (ill-posed) retrievals / affects accuracy (AOD ...)
- $\neg$  ... is estimated from ground-based data (sampling!) and model climatologies
- $\neg$  ... is output from retrievals to some extent (AERONET, satellite)
- → Different instruments
  - → ... need different definitions
  - → … have different / limited information content for aerosol type



## **Aerosol typing**

#### Aerosol typing procedures differ in many aspects:

- approach
- nomenclature (e.g. same name for different definitions)
- assumed number of components (e.g. TOMS: 3 MISR: 74)
- parameters used for the classification
- ➢Particle size
- Particle shape
- >Absorbing properties
- Aerosol load
- Location
- Seasonal behavior
- approach
- >by source (e.g. dust, sulfates)
- by optical properties (e.g. aspherical, absorbing)



Examples



**CALIPSO** 





#### **Questions**?

#### What is needed?

- review of aerosol typing assumptions
- harmonization of the nomenclatures
- harmonization of the procedures

Long-term perspectives (WG2) Validation (WG3) Improved accuracy(WG4)

Can / we find one overarching nomenclature? Do we see a need / benefit in it?



## **Critical points**

#### •how realistic is an overarching common definition of aerosol types?

• GB communities (e.g. AERONET, EARLINET, in situ) also have different procedures for the typing, even in the same network

• the 2013 IPCC report classification mainly relies on near-surface typing





#### Simple aerosol typing in Aerosol\_cci



### Simple concept

- 7 4 basic components
- Reflects theoretical information content
- External mixtures with 3 mixing fractions
- Evaluation ongoing of information content
- Output (easier to validate / compare)
  - → Fine mode AOD (fine mode / total mixing fraction)
  - → Dust AOD (dust / total coarse mode mixing fraction)
  - → [AAOD (absorption fraction in fine mode)]



## esa 4 aerosol components

| aerosol<br>component    | Refr.<br>index,<br>real part<br>(55µm) | Refr.<br>Index,<br>imag<br>part<br>(.55µm) | reff<br>(µm) | geom.<br>st dev<br>$(\sigma_i)$ | varianc<br>e<br>(ln $\sigma_i$ ) | mode.<br>radius<br>(µm) | comments                            | aerosol<br>layer<br>height |
|-------------------------|----------------------------------------|--------------------------------------------|--------------|---------------------------------|----------------------------------|-------------------------|-------------------------------------|----------------------------|
| Dust                    | 1.56                                   | 0.0018                                     | 1.94         | 1.822                           | 0.6                              | 0.788                   | non-<br>spherical                   | 2-4km                      |
| sea salt                | 1.4                                    | 0                                          | 1.94         | 1.822                           | 0.6                              | 0.788                   | AOD<br>threshold<br>constraint      | 0-1 km                     |
| fine mode<br>weak-abs   | 1.4                                    | 0.003                                      | 0.140        | 1.7                             | 0.53                             | 0.07                    | (ss-albedo<br>at 0.55 μm:<br>0.98)  | 0-2 km                     |
| fine mode<br>strong-abs | 1.5                                    | 0.040                                      | 0.140        | 1.7                             | 0.53                             | 0.07                    | (ss-albedo<br>at 0.55 μm:<br>0.802) | 0-2 km                     |

# @esaAOD mixing (fractions) from AEROCOM

Fine mode fraction



Fraction of the less absorbing component in the fine mode



Fraction of dust in the coarse mode





AOD550 (not used as a priori)



## Information content analysis (SYNAER/SCIA)

#### A tool to identify systematically strengths and limitations





DOF as  $f(AOD, \theta_0)$ 

PCA weights a and 2