CALIOP Uncertainty Estimates

Dave Winker NASA LaRC

Aerosol Layer Product

Table 34: Lidar 5 km Layer Descriptor Record: Aerosols

Parameter	Data Type	Units	Nominal Range	Elem/ Rec	Bytes
Feature_Optical_Depth_532	Float_32	NoUnits	0.03.0	8	32
Feature_Optical_Depth_Uncertainty_532	Float_32	NoUnits	0.0TBD	8	32
I - · · · · · - ·		T		-	
Feature_Optical_Depth_1064	Float_32	NoUnits	0.03.0	8	32
Feature_Optical_Depth_Uncertainty_1064	Float_32	NoUnits	0.0TBD	8	32
	<u>-</u>	•	•	•	•
r come_ompaneom_r mpp	0.4m_10	2100222	210,2.10		2.0
ExtinctionQC_532	UInt_16	NoUnits	065,535	8	16
ExtinctionQC_1064	UInt_16	NoUnits	065,535	8	16
CAD_Score	Int_8	NoUnits	-101105	8	8
			· ·	ì	1

Column Properties

Table 33: Lidar 5 km Column Descriptor Record: Aerosols

Parameter	Data Type	Units	Nominal Range	Elem/ Rec	Bytes
Column_Optical_Depth_Aerosols_532	Float_32	NoUnits	0.03.0 ^M	1	4
Column_Optical_Depth_Aerosols_Uncertainty_532	Float_32	NoUnits	0.099.99	1	4
Column_Optical_Depth_Stratospheric_532	Float_32	NoUnits	0.03.0 ^M	1	4
Column_Optical_Depth_Stratospheric_Uncertainty_532	Float_32	NoUnits	0.099.99	1	4
Column_Optical_Depth_Aerosols_1064	Float_32	NoUnits	0.03.0 ^M	1	4
Column_Optical_Depth_Aerosols_Uncertainty_1064	Float_32	NoUnits	0.099.99	1	4
en 1 en en 1 en 1 en 1 en 1 en 1 en 1 e	777 - 00	** ** **	00 00M	•	

Aerosol Profile Product

Table 37: Lidar 5 km Aerosol Profile Record

Parameter	Data Type	Units	Nominal Range	Elem/ Rec	Bytes
Extinction_Coefficient_532	Float_32	km ⁻¹	0.01.25	399	1,596
Extinction_Coefficient_Uncertainty_532	Float_32	km ⁻¹	0.099.99	399	1,596
Aerosol_Multiple_Scattering_Profile_532	Float_32	NoUnits	1.0	399	1,596
Backscatter_Coefficient_1064	Float_32	sr ⁻¹ km ⁻¹	0.00.03	399	1,596
Backscatter_Coefficient_Uncertainty_1064	Float_32	sr ⁻¹ km ⁻¹	0.099.99	399	1,596
Extinction_Coefficient_1064	Float_32	km^{-1}	0.01.0	399	1,596
Extinction_Coefficient_Uncertainty_1064	Float_32	km ⁻¹	0.099.99	399	1,596

- There are two retrieval algorithms used in the standard products
 - Constrained retrieval
 - Lidar ratio derived from layer transmittance measurement and used as constraint on the extinction retrieval
 - Unconstrained retrieval
 - Lidar ratio needed by the extinction retrieval is estimated by an aerosol typing algorithm
 - Daytime aerosol retrievals are almost always unconstrained

The extinction retrieval solves for the particulate backscatter coefficient, $\beta_p(r)$:

$$\beta_P(r) = \beta_N'(r) / (T_M^2(r_N, r)T_P^2(r_N, r)) - \beta_M(r)$$

Which is a simple re-formulation of the lidar equation:

$$\beta_N'(r) = \beta'(0,r) / C_N(r_N) = \left[\beta_M(r) + \beta_P(r)\right] T_M^2(r_N,r) T_P^2(r_N,r)$$

These equations are the basis for an error propagation analysis of the estimated error sources

J. Ocean. Atm. Tech., March 2013, 395-428

The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error Sensitivity Analyses

STUART A. YOUNG

CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

MARK A. VAUGHAN

National Aeronautics and Space Administration, Hampton, Virginia

RALPH E. KUEHN

Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin

DAVID M. WINKER

National Aeronautics and Space Administration, Hampton, Virginia

Error Estimation

Sources of error considered

- Calibration
- Aerosol lidar ratio
- •SNR

Sources of error not considered

- Misclassification of aerosol and cloud
- Misclassification of aerosol type
- Failure to detect layers

Standard propagation of errors techniques are used to estimate:

- Aerosol extinction at each level
- AOD of each aerosol layer
- Column AOD

Error Estimates

Error in extinction due to an error in calibration:

$$\varepsilon[\sigma_P(r)] = S_P \beta_T(r) \left[\alpha \frac{T_P^2(0,r)}{\hat{T}_P^2(0,r)} - 1 \right], \quad (30)$$

Error in optical depth:

$$\varepsilon[\tau_{P}(0,r)] = -0.5 \ln \left[\frac{\hat{T}_{P}^{2}(0,r)}{T_{P}^{2}(0,r)} \right]$$

$$= -0.5 \ln \left\{ 1 + \frac{\varepsilon[T_{P}^{2}(0,r)]}{T_{P}^{2}(0,r)} \right\}. \tag{31}$$

Error in extinction due to an error in lidar ratio:

$$\varepsilon[\sigma_{p}(r)] = (\psi - 1)S_{p}\beta_{p}(r) + \psi S_{p}\beta_{T}(r) \left[\frac{T_{p}^{2}(0, r)}{\hat{T}_{p}^{2}(0, r)} - 1 \right],$$
(39)